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Abstract

In the analysis of vibrations of continuous elastic systems, one often encounters

complicated transcendental equations with roots directly related to the system's natural

frequencies. Typically, these equations contain system parameters whose values must be

specified before a numerical solution can be obtained. The present paper presents a

method whereby the fundamental frequency can be obtained in analytical form to any

desired degree of accuracy. The method is based upon truncation of rapidly converging

series involving inverse powers of the system natural frequencies. A straightforward

method to developing these series and summing them in closed form is presented. It is

demonstrated how Computer Algebra can be exploited to perform the intricate analytical

procedures which otherwise would render the technique difficult to apply in practice. We

illustrate the method by developing two analytical approximations to the fundamental

frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to

the numerical solution of the exact (transcendental) frequency equation over a range of

system parameters.
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Ia.tzzaar,Iig.a
The general availability of computer algebra systems has resulted in analyses of

complicated problems which heretofore have been regarded as analytically intractable.These

tools practically eliminate the tedious error prone manipulations required by hand-

derivations and allow the analyst to explore various analytical treatments which would be

too costly otherwise. In the same way that digital simulation has revolutionized the

numerical treatment of engineering problems, symbolic computation promises to be a

powerful tool in analytical investigations.

In the area of muhibody dynamics, computer algebra has been used to derive the full

nonlinear equations of motion in symbolic form [1]. These equations are typically so

complex that they daunt inspection. However, built in translators convert these equations

into a higher programming language e.g FORTRAN which results in extremely efficient

digital simulations. For sufficiently simple systems, symbolic representations can be of

direct use in studying such issues as elastic stability and buckling [2]. Perturbation methods

are ideally suited to treatment by symbolic computation [3].

The classical method of determining the natural frequencies of a continuous elastic

system results in an eigenvalue problem and associated characteristic equation. In general,

this equation is transcendental and is embedded with various system parameters. Thus

recourse must be made to numerical methods to solve these equations and the dependencies

of the frequencies upon the various parameters can only be revealed through exhaustive

computation. It therefore appears desirable to be able to approximate the roots of these

equations by analytical expressions which are relatively simple yet accurate. The principal

idea behind the method presented in this paper is to find closed form expressions for

infinite series, the terms of which involve inverse powers of the natural frequencies.

Truncating the series after the first term gives an approximation to the fundamental

frequency. By summing sufficiently high powers, this approximation can be made

arbitrarily accurate; but the resulting formula increases in complexity. The methods

whereby others have addressed this problem are quite varied, ranging all the way from

Fourier Series to complicated contour integration and difficult procedures involving integral

equations. Hughes [4] obtains numerous modal identities by expanding the Green's

function in a series of eigenfunctions. The technique we present is extremely simple and

appears to have been applied in a restricted form by Lord Rayleigh [5]. Our result is very

general and can be applied to any vibrational system one the characteristic equation is

established. The only difficulty in applying the method is the need to develop complicated

transcendental functions into Taylor series and manipulating the resulting coefficients.

However, with the use of a computer algebra system, this task becomes almost trivial. The

method is illustrated by deriving two analytical approximations to the fundamental

frequency of a vibrating cantilever carrying a rigid tip body. The accuracy of these results is

verified by comparisons with numerical soludon of the frequency equation over a range of
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parametervalues.

Approximations Based Upon Rayleigh's Principle

Before presenting the technique predicated on infinite series, let us consider a

"symbolic" solution to a prototype vibration problem employing the celebrated Rayleigh

Principle. The elastic system consists of an Euler-Bernoulli beam cantilevered at one end,

and carrying a rigid tip body at the other (see Fig. 1.A). The beam has a constant mass

density (per unit length) 19, uniform bending stiffness El, and nominal length _. A rigid tip

body of mass m and inertia J (about P) is attached to the beam tip at x---_. We denote by c

the distance from P to the tip body mass center.The derivation of the partial differential

equation of motion and associated eigenvalue p_blem is given in Appendix A. The system

eigenvalues are the solutions 13k tO eq.(A.9) and are seen to depend upon the three

dimensionless tip body parameters

m" =m, c" =C, j* =_J.....

pe e pe3

The relationship between the eigenvalues and the system natural frequencies is given by

eq. (A. 10).

Let us approximate the beam deflection u(x,t) with a cubic polynomial in x.

u(x,t) = _2q 1(t) + _3q2(t)

where _=x/_ and the geometric boundary conditions at x---0 have been observed. Here

ql(t),q2(t) are undetermined generalized coordinates. The system kinetic energy T and

potential energy V are then discretized into the respective quadratic forms (see eqs.(A. 12)

& (A.I I))

[P-if-+ m( 1+2c'X 1+3c*}+-_2 J-mc2)] ell '2

v-2et I,,2
---_-,'t I +3q_+3qlq2)

If we write T=I/2_iT[M]q and V=i/2qT[K]q, then the system's first two natural

frequencies are approximated by the roots _ of the characteristic polynomial
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det([K]-(_M])=0

Expandingthisdeterminantandsolving the resultant quadratic is relatively painless if a

computer algebra system is invoked.The resulting expression for the fundamental

frequency can be written in the form

with

131 =[ 1260 ]_/4
[(630c* +210)m* +630J* +t3+51 J

whcre t3 =2¢'J(33075 J* 2 + 1260J* +tE+h +208)1/2

and t2=[(66150c*+11025)J* +4200c* + 1680]m*

t l =(44100c" 2 + 22050 c* + 3675)m .2

(1)

This result of course provides an upper bound to the true fundamental frequency.

It should be noted that this method meets with practical difficulties when one attempts

to improve the accuracy by retaining additional terms in the expansion of the elastic

displacement. The higher degree of the concomitant characteristic polynomial renders an

analytical solution impossible. The method to be described in the next section does not have

this limitation.

Approximations Based Upon Infinite Series

The current method is based upon truncation of infinite series in the frequencies on

such as_'., l/c0,2, __,,"._1/_$ etc. where the sum can be expressed as a relatively simple

algebraic function of the system parameters. If the series convergence is sufficiently rapid,

then truncating the series after the first term yields a formula which approximates the

fundamental frequency o_1. Clearly, by summing sufficiently high powers of (oh1 we can

approximate the first frequency to any desired degree of accuracy and will always have a

lower bound. As will be seen, the corresponding formulas become increasingly complex.

However, it should be pointed out that the generation of these higher order results can

always be carried out in practice unlike the procedure of the last section. Hughes [4]

generates series like the above and expresses the sum as a volume integral containing

products of the Green's function with the mass density. He notes the difficulty of

performing these integrations when the powers of on1 increase. Our method only requires a

Taylor series expansion once the transcendental frequency equation is established.

Before considering the case of a transcendental equation, we present an elementary

result from the theory of polynomial equations.

Given the polynomial equation

1 +0_ 1 Z+ (_2 z2 +. • •+0_n zrt =0
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with roots zi(i=1,2,..., n) (over the field of complex numbers), we can show that

n

(a) _ z&i=-al
i=l

I1

(b) _ l--=ot2-2t:z2
i=l Z_

Proof
First note that if 0 is a root, it can be removed leaving a deflated polynomial with no

zero roots. Hence there is no loss in generality if we assume all zi_0. The general

polynomial with roots zl ,z2,-- .,Zn call be written as

(z-zl)(z-z2)...(z-z.)--0

Expanding and dividing through by the product (-l)nZlZ2 ... Zn we obtain

+ z,,=0
_Z1 Z2 Zn/ _'ZIZ2 ZIZ3 Zn-lZn/ ZlZ2--'Zn

which is of the desired form. It follows that

-ctl =sum of reciprocals of roots

ct2-- sum of products of the reciprocals of the roots taken 2 at a time
n

Hence, Ot2-20t2=X _L
i=l Zi2

Sums involving higher powers of the inverse roots

X "Jz-= 3 °t 1°t2- 3°t3-°t3,
i=Â z_

n

E _- =°t4-4ct21°t2+2ct22+40t'tx3-40_ etc.
i=l Z_i

can also be generated. Thus

In an effort to adopt these results to the case of a transcendental equation f(z)--0 with an

infinite number of roots, it is natural to expand f(z) in a power series and formally apply

the above formulas to this "infinite degree" polynomial. It turns out that this procedure can

be proven mathematically valid when f is an entire function of the complex variable z. We

will not present the proof here but refer the reader to [6] for the necessary theory of entire

(integral) functions.
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As a meansof illustration,we apply this techniqueto approximatethe fundamental
frequencyof the beam-tipbodysystemconsideredabove.Usingpowerseriesexpansions
for thetrigonometricandhyperbolicfunctions,thefrequencyequation(A.9) assumesthe
form

1- 11-_212J°+12m°c°+rim*+ 1)13n +
(2)

5--_0 (420m*+ 168)J°-420m*2c°2+ 56m* c° +8m°+ 11138.... =0

we m

Since the coefficients of 13 and 132 are zero, we conclude that _ I---0 and 5". -1---0. These

two results become immediately obvious, since, if 13k>0 is a root of eq.(A.9) then so are:

-13k, il_k,-_k. In order to obtain series converging to a nonzero result, write eq.(2) as

1+_1134+o_213s+.... 0

and form the auxiliary "polynomial"

1 +(IlZ+0_2Z2+ .. .=0 (3)

If 13kis a root of eq.(2), then zk=134 is a root of eq.(3). This artifice coalesces the quadruple

of roots {13k,--13k,i13k,--tOk} of eq.(2) into a single root of eq.(3). Applying our method to

the auxiliary equation(3), we obtain

and

_L.= 12J°+ 12re*q* +4rn*+ 1

°__,13, 12

--_--8= {(5880c°2+3360c°+560)m*2 +[( 10080c°+2520)J'+728c ° +264] m" +
n= I _n

5040J °2 + 504J ° + 33 }/5040

Truncating the above series after the first term leads to the respective approximations

and
12J*+12m*c*+4m*+l

13, =(sl 504 0 )t/,+S2+S 3

(4)

(5)

(6)

(7)
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where

sa=(5880c'2+3360c'+560)m.2

s2 =[(10080c'+2520)J" + 728 c'+264]m*

s3 =504J*(l+lOJ*)+ 33

Ncmcrical Results

Verification of the modal identities (4) & (5) is provided in Table 1 below. The

eigenvalues _ were generated by numerically solving the transcendental equation (A.9);

the sequences of partial sums appear in the last two columns. The numbers in the last row

(n=**) were obtained from the theoretical values appearing on the right hand sides of

equations (4) and (5). All values were generated with m°=2.0, J*=0.028, and c'=0.1 .

Table 1 - Partial Sums of Series:

Eigenvalues of Beam/tipbody

n 13.

1 1.0077

2 3.4599

3 5.9100

4 8.5047

5 11.3806

.9699

.9769

.9777

.9779

.9780

.9780

(eq. 4)

.9408

(eq. 5)

The two approximations to the "dimensionless frequency" 131 based upon series

truncation (eqs. (6)&(7)) are tabulated in Table 2 below for the case of a pure tip mass -

J*=c'=0. The values in the second column ('131') were obtained by numerical solution of

eq.(A.9). As the value of the tip mass increases (relative to the mass of the beam),both

approximations improve. As expected,the approximation based upon eq.(7) is superior to

that supplied by eq.(6).
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Table2- Fundamental Frequency Approximations for Beam with Tip Mass

m •

0.0 3.5160

5.0 0.7569

10.0 0.5414

15.0 0.4437

20.0 0.3850

131 Eq. 6 (% error) Eq. 7 (% error)

3.4641 (1.5)

0.7559 (0.13)

0.5410 (.069)

0.4435 (.047)

0.3849 (.035)

3.5154 (1.6 E-02)

0.7569 (1.4 E-04)

0.5414 (3.7 E-05)

0.4437 (1.7 E-05)

0.3850 (9.7E-06)

Table 3 below is similar in format to Table 2 but was generated with J°=l and c°=0,

which represents a relatively large concentrated inertia at the tip of the beam. In this case we

see that the approximations degrade with increasing m °.

Table 3 - Fundamental Frequency Approximations for Beam with Tip Body
c----0, J*= 1

m °

1.0

1.3

1.5

1.8

2.0

131 Eq. 6 (% error) Eq. 7 (% error)

.8679

.8406

.8236

.7995

.7845

.8402 (3.2)

.8120 (3.4)

.7947(3.5)

.7708 (3.6)

.7559 (3.6)

.8669(.11)

.8396(.12)

.8225 (.13)

.7984(.14)

.7833(.14)
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We shall presently analyze the free vibration of a uniform cantilevered beam carrying a

rigid tip body. Expressions for the potential and kinetic energies as well as the

transcendental frequency equation are established.

Fig. I.A below depicts the system in a deformed state. A uniform beam of mass

density p (per unit length), bending stiffness E1 and length _ lies along the x axis when in

equilibrium. A rigid body of mass m and moment of inertia J (about P) is attached to the

beam tip at P. The distance between P and the rigid body mass center is c, and this

directed line segment lies along the beam tip tangent direction (to prevent the tip body from

exerting axial loads onto the beam). The small transverse displacement of the beam is

denoted by u(x,t).

" x
/

Fig. 1.A - clamped beam with tip body

We shall assume that the displacement of the beam and its slope are small quantities and

therefore make the approximation that the angle 0p between the x axis and the beam tip

tangent line at P can be approximated by Ux(_,t). Denoting the inertial velocities of P and

the tip body mass center by vp and v o respectively, we can write

V(_=Vp+ top×(:

where t.0p=Uxt(_,t)k is the angular velocity of the tip body and c is the vector from P to the

tip body mass center. Recalling that ]0r_ is small and neglecting the term 0p(_p, we find

8u 8 u .
v_)= -:----(_,t)+c------(_,t) J (A.1)

Lat 8xat J
The expressions for the absolute translational and rotational accelerations of the tip body
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masscenterfollow from theaboveby direct differentiation.

In order to write the boundary conditions for u(x,t) at the endpoint x---_, we consider a

free body diagram of the tip body. As indicated in Fig. 2.A, the beam exerts a force S

directed along the y axis and a moment M directed along the z axis upon the tip body at

the point P.

"- X

S

M

Fig. 2.A free body diagram of tip body

The equation of motion for the tip body along the y axis is

Lat ax t2 J

From elementary beam theory the shearing force
3 /_ A

S=EI a u/dx_x=g . In conjunction with the above,

boundary conditions.

in the beam at x---_ is given by

this supplies one of the required

=0 at x--_ (A.2)

The second boundary condition at x---_ is obtained by considering the rotational motion of

the tip body. If we denote by h the angular momentum of the tip body about its mass

center, then we have the relation

dh = M-cxS
dt

Taking the z component of this equation,neglecting the second order term in cop and using
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therelationM=_Ei32u/3X_x__ek,__lwearriveat theresult

32u 32u 33u
EI_+rnc_+J_=0

3x 2 3t 2 3x3t 2

at x---_ (A.3)

Since the beam is clamped at x=0, we have the two additional boundary conditions

u(0,t)=0 and -_(O,t)=O
Ox

The partial differential equation for flee vibration is the well known relation

El 34u O2u--+p--=0
Ox 4 Ot2

(A.4)

We now proceed to solve the above homogeneous equation subject to the geometric

boundary conditions (A.4) and natural boundary conditions (A.2) & (A.3). Seeking

solutions of the form eZ°tg)(x) we are led to the eigenvalue problem

d4q) _.g)=0 (A.5)
dx 4

q)"(L)) + _ q)(_)+c q)'(_] = 0 (A.6)

_'(e)- p_[r/x: tp(_) + J _0'(_)] = 0 (A.7)

q)(0) = q)'(0) =0 (A.8)

where (') indicates differentiation with respect to x.

It can be shown that all the eigenvalues are positive. The general solution of eq.(A.5) is

(p(x) = c I sin (_x + c2 cos ctx + c3 sinh ocx + c4 cosh ctx

(oc_=K'/4 >0)

In order to have a nontrivial solution satisfying the boundary conditions (A.6),(A.7) &

(A.8), the eigenvalues must satisfy the transcendental characteristic equation
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m'(J*-m*c.2)134(1-cos [3cosh[3)+m*l](cos13sinhl3-sin 13cosh[3)

-2m*c*132sin13sinhl3-J*[33(sin13coshl3+sinh[3cos13)

+1+cos 13coshl3=O

(A.9)

wherewehaveintroducedthe"dimensionlessfrequency"13--o_andthe dimensionlesstip
bodyparametersaredef'medby

m'=n3/oe, c*---c/g,J*=J/pg3

The natural frequencies are then given by

O)k __ El .2

p_ 13z (A.10)

For purposes of rcfcrcncc,thc systems potcntial energy V is in the form of strain energy

stored in the beam and is given by the formula
t

_--_-1dx (A.lI)

while the kinetic energy T is the sum of the translational kinetic energy of the beam and tip

body with the rotational kinetic energy of the tip body. Employing eq.(A, l) we can write

t

T= 0u pdx+ e,t)+c _,t) +_J-rnc 2 e,t)
_0tJ

(A.12)
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